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Abstract

On some days we feel like we are not performing at our best. However, whether these experiences align with

substantive differences in cognitive performance has not been studied systematically. We analyse dense

time-series data of children’s performance on nonverbal reasoning (n = 459) and visuospatial working mem-

ory (n = 4150) tasks using dynamic structural equation models to describe their pattern of instability across

trials and days. Our model comparison confers domain-specific results, with children showing evidence for

fluctuations in their nonverbal-reasoning speed from day-to-day, but stability in working-memory perfor-

mance. The size of trial-to-trial fluctuations was weakly correlated with day-to-day fluctuations, suggesting

distinct mechanisms across timescales. We show that day-to-day fluctuations in cognitive performance are

more than folk intuition, argue that their neglect is problematic for translational and epistemic reasons, and

demonstrate how a better understanding of cognitive performance as a dynamic phenomenon can improve

cognitive assessment and theory construction.
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Songs, sayings, and colloquialisms capture the shared experience of humans having ‘good days’ and ‘bad

days’ – Ups and downs relative to some baseline on a given mental phenomenon of interest. In stark con-

trast, psychological constructs such as intelligence and personality are often considered hallmark examples

of traits: Relatively stable features of people not expected to fluctuate meaningfully. But what if this assump-

tion does not hold – If a person’s average score on a given day is substantially different from their score the

day before or after? The widespread practice of single-occasion testing acts as a prominent example of the

ramifications. Day-to-day instability in cognitive performance would mean that tests coinciding with either

good or bad days could mis-stratify children, leading to lifelong consequences. This issue was first flagged

by Raymond Cattell who, in 1966, stated that the neglect of performance fluctuations in intelligence testing

would be ’morally wrong’ (p.357). Thus, taking good and bad days seriously could have considerable ethical

and translational implications. These include re-examining performance thresholds for remedial teaching,

incorporating estimates of daily variability into a more personalized assessment of a given child, and re-

forming the practice of standardized testing.

The existence of multiple mechanisms that vary from day-to-day and are, a priori, likely to affect cogni-

tive performance suggests that the notion of good days and bad days is not just folk intuition. These include

psychological mechanisms such as day-to-day fluctuations in sleep (Fang et al., 2021; Könen et al., 2015),

mood (Kouros and El-Sheikh, 2015), fatigue (Hamilton et al., 2023), and self-regulation (Blume et al., 2022;

Ludwig et al., 2016), all of which have been shown to affect cognitive performance (Blume et al., 2022; Chep-

enik et al., 2007; Kok, 2001; Könen et al., 2015; Lorist and Tops, 2003). Other plausible mechanisms are phys-

iological. For instance, a considerable body of empirical evidence, informed by data from dedicated ‘health

wearable’ tools have demonstrated the effect of patterns of fluctuation in, among others, heart-rate variabil-

ity (Forte et al., 2019) respiration (Allen et al., 2023; Varga and Heck, 2017), and diurnal rhythms (Schmidt

et al., 2007) on cognitive performance. We see evidence of daily fluctuations in all the above domains (Carr

et al., 2018; Hunt et al., 1985; Kikuya et al., 2008; Robinson et al., 2014). This provides the impetus for us to ex-

pect that fluctuations in, at least some of, these domains bring about fluctuations in cognitive performance

from day to day.
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Taken together, cognitive fluctuations at the day-to-day level are plausible a priori, and understand-

ing whether they occur is crucial for both principled and translational reasons. However, especially com-

pared to cognitive performance, very little is known about cognitive fluctuations. In fact, only a few studies

have described a pattern of day-to-day fluctuations (Dirk and Schmiedek, 2016; Galeano Weber et al., 2018;

Galeano-Keiner et al., 2022; Rabbitt et al., 2001). Here we extend prior work by leveraging breakthroughs

in quantitative approaches in a uniquely large and rich dataset. Using a flexible quantitative framework we

use model comparison to formally test if day-to-day fluctuations are needed to explain performance in two

widely studied cognitive constructs—visuospatial working memory (n = 4150) and nonverbal reasoning (n =

459).

Working memory is our first domain of choice. It has been shown to be highly predictive of academic

performance (Alloway and Alloway, 2010; Friso-van den Bos et al., 2013; Gathercole et al., 2004), it has been

implicated in multiple mental disorders (Grenard et al., 2008; Houben et al., 2011; Huang-Pollock et al., 2017;

Nikolin et al., 2021), and is viewed as central to the structure of intelligence (Schmiedek et al., 2020). Our

second cognitive domain of choice is nonverbal reasoning (or fluid intelligence). Nonverbal reasoning is

ubiquitous in popular intelligence tests (e.g. WISC-V, Kaufman et al., 2015; Stanford-Binet intelligence scale

4th edition, Roid and Pomplun, 2012), it is highly correlated with standardized assessment scores (e.g. SAT;

Frey and Detterman, 2004), and has been shown to have the largest impact on mathematics performance in

a training study (Judd and Klingberg, 2021). Working memory and nonverbal reasoning research has shown

that participants often showcase strategy shifts which form a plausible source of day-to-day fluctuations

(Bobrowicz et al., 2024; Dunning and Holmes, 2014; Jastrzębski et al., 2018; Laurence and Macedo, 2023).

Our hypotheses are as follows:

1. Day-to-day variability in mean visuospatial working-memory response speed and accuracy is needed to

explain the pattern of children’s cognitive performance across multiple days.

2. Day-to-day variability in mean nonverbal reasoning speed is needed to explain the pattern of children’s

cognitive performance across multiple days.

3. Individual differences in day-to-day variability and trial-to-trial variability will be positively associated
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within each task. In other words, people who fluctuate more at the trial-to-trial level will also show more

pronounced day-to-day fluctuations.

4. Individual differences in day-to-day variability will be positively associated across tasks – People who

show more pronounced day-to-day effects in one task (visuospatial working memory) will also show pro-

nounced day-to-day effects on the other (nonverbal reasoning).
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Figure 1. Visual illustration of hypotheses using simulated data. Hypotheses 1 and 2 (H1 & 2) are depicted
in the top panel using two simulated examples that reflect the predictions of the models we are
comparing. In the figure trials are color-coded to reflect different days. The mean of each day is depicted
using solid black horizontal lines. The mean across all days is shown by the dashed red line running across
all trials. For hypothesis 3 we visually depict our prediction using four quadrants. The shaded quadrants
show patterns of data consistent with a positive correlation between day-to-day variance and trial-to-trial
variance. Hypothesis 4 is depicted using a scatterplot where the association between individual
differences in day-to-day variance across tasks is expected to be positive.
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Methods

Participants

We analyzed data from two subsamples of children enrolled in the Vektor app. Vektor is an adaptive

cognitive training app designed to improve children’s mathematics performance through cognitive training

(Judd and Klingberg, 2021). Children were voluntarily enrolled for Vektor training by their respective edu-

cators. The Vektor app includes multiple training plans to which it randomly allocates children once they

log in. For our analyses, we included children who completed at least 20 days of visuospatial working mem-

ory training (n = 4150) or 20 days of nonverbal reasoning training (n = 459). We chose this cutoff to mirror

the minimum day count of prior research that found evidence for reliable fluctuations from day-to-day Dirk

and Schmiedek, 2016). Demographic characteristics of children such as sex, gender, and ethnicity were not

logged through the app. Children were between five and eight years old at the time of assessment.

Procedure and materials

Working memory grid task

To assess visuospatial working memory performance, a working memory grid task was used (Figure 2b,

bottom panel). The working memory grid task displays a 4x4 grid of dots. The dots light up in a sequence

that needs to be recalled by the participant. The difficulty of the task adapts to the child’s performance. Each

time a participant correctly reproduces a sequence of dots two times in a row the difficulty increases by 1

level. If the participant incorrectly recalls the sequence once, the difficulty decreases by 1 level. The amount

of items that can be recalled (i.e. level number) can be seen as a proxy for the child’s working memory span.

Children’s performance is recorded using an ordinal measure of accuracy, using the number of sequential

dots correctly recalled within a trial (i.e. partial-credit load scoring; Conway et al., 2005), and a continuous

measure of response speed in milliseconds. Accuracy was treated as a continuous measure for all analyses

since its range exceeds 5 values and its distribution is Gaussian (see Supplementary Materials, Figure SA1;
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Rhemtulla et al., 2012).

Nonverbal reasoning task

To assess nonverbal reasoning (NVR) performance, children performed a task where they had to com-

plete a sequence of spatial patterns by choosing the correct option from a variable number of alternatives

(Figure 2b, top panel). The app modulates difficulty by increasing the complexity of stimuli in the sequence

(i.e., increasing number of dots, colors, and shapes, Bergman Nutley et al., 2011; Judd and Klingberg, 2021).

Children’s performance was recorded using a continuous measure of response speed in milliseconds.

Figure 2. (a) Schematic representation of data nested data structure with trials nested within days, nested
within children. (b) Screenshots of sequential nonverbal reasoning task (top panel) and visuospatial
working-memory-grid task (bottom panel). (c) Raw data of a single child with performance during separate
days color coded, superimposed on top of a scatterplot of light-blue dots showing the performance of all
children in our sample. The child’s mean performance during each day is marked by the black horizontal
lines and their mean performance across all days is marked using a dashed red line.
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Statistical analyses

Pre-processing

First, for the working memory task we divided the response time on each trial by accuracy, defined as

the number of buttons correctly pressed in a sequence. Since longer sequences take longer to mechani-

cally reproduce this correction should better approximate comparable response-times across trials. For the

nonverbal reasoning task no correction was applied, since there was no relation between trial difficulty and

artefact-driven response speed. Second, for both tasks, response times were log-transformed before any

analyses to reduce skewness (Supplementary Materials, Figure SA1). The log-transformed response times

were used for all analyses.

Summary of analyses

We used two complementary modeling approaches to test our hypotheses. First, we extended the Dy-

namic Structural Equation modeling (DSEM; Asparouhov et al., 2018; Lin et al., 2018; Rast and Ferrer, 2018)

framework by building a three-level DSEM to model our nested data structure with trials (level 1), nested

within days (level 2), nested within children (level 3; Figure 2a). To assess whether, on average, children

in our population fluctuated from day-to-day in their cognitive performance (visuospatial working memory

and nonverbal reasoning) we compared a two-level DSEM, that does not explicitly model variation at the

day-to-day level, to our three-level DSEM. Testing a three-level structure in one step allows us to estimate the

population day-to-day variance while taking the uncertainty of estimates into account and applying shrink-

age. Second, we assessed how many children showed evidence for daily fluctuations via model selection

at the level of each individual using models that estimate the parameters of dynamic structural equation

models for each child separately. This allowed us to assess individual differences in day-to-day variance as

a complement to our first analysis. The trade is that when we aggregate individual-level estimates in further

analyses we do not take their uncertainty into account. Third, we assessed whether individual differences

in day-to-day variability and trial-to-trial variability are correlated within each task. Fourth, we assessed
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whether individual differences in day-to-day variability are correlated across tasks.

Bayesian Dynamic Structural Equation models

Our goal was to test for the existence of day-to-day fluctuations against a simpler alternative (i.e. base-

line model) which assumes that average performance is comparable across days. We specified a two-level

DSEM as our baseline model. DSEM encompasses four trial-level sources of variation and individual dif-

ferences therein that are frequently found in human time-series, and reflect substantively interesting cog-

nitive processes in and of themselves. First, we have mean performance which captures a child’s average

performance across the entire time series (γ00i). Second, we have trial-to-trial variability (σi). Since fluctu-

ations at faster timescales need to be taken into account when modeling fluctuations at slower timescales

(Schmiedek et al., 2013; Dirk & Schmiedek, 2016), we modelled trial-to-trial fluctuations which are the most

well-studied type of instability with a growing mechanistic literature surrounding them (Li et al., 2001; Fagot

et al., 2018; Garrett et al., 2023). Third, inertia (first-order autoregression) captures how well performance

on a given trial predicts performance on the subsequent trial (β2i). Temporal dependency amongst adja-

cent trials is a typical feature of human time-series (e.g., Solfo and Van Leeuwen, 2023; Wagenmakers et

al., n.d.). Failing to account for inertia can inflate our estimates of daily fluctuations (de Haan-Rietdijk et

al., 2016). Lastly, we have a linear trend (β1i). Repeated exposure to a task can induce improvement (or

worsening, through e.g. boredom) in performance over days. This also needs to be taken into account, lest

we misinterpret growth for day-to-day fluctuations. We within-person mean centered the inertia parame-

ter (de Haan-Rietdijk et al., 2016). Our three-level DSEM model, adds one parameter to the two-level DSEM

which allows each child’s mean performance to vary from day-to-day using random effects. This parame-

ter is termed the day-to-day variability parameter (β0ij) and was used to assess whether at the population

level we find evidence of day-to-day fluctuations in mean cognitive performance via model selection. We

within-person/within-day mean centred the inertia parameter in the three-level DSEM model. This allows

us to estimate the mean of each day, instead of an intercept (de Haan-Rietdijk et al., 2016). We allowed indi-

vidual differences in each one of the DSEM parameters, except for day-to-day variability, due to limitations
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in currently available tools. The mathematical specification of this model for subject i, at day j, on trial k, is

a follows:

Location (mean) model:

Level 1 model:

yijk = β0ij + β1iTimeik + β2iy(k−1)i + ϵijk

Level 2 model:

β0ij = γ00i + υ0ij

Level 3 model:

γ00i = δ00 + ν00i

β1i = δ01 + ν01i

β2i = δ02 + ν02i

Scale (variance) model:

log(σ
2
ijk) = ω0 + τi

Model estimation

We estimated our Bayesian models using the R package rstan (Carpenter et al., 2017). Rstan is a com-

piler for the probabilistic programming language Stan in C++. We also include code using the brms package

for accessibility (Bürkner, 2017). The brms package is a front-end for the statistical computing language

Stan and is written in the accessible style of lme4. The Stan models are estimated using No-U-turn sampling

(NUTS), an extension of Hamiltonian Markov Chain Monte Carlo (MCMC) estimation (Hoffman and Walters,

2022). Due to computational limitations, we created random subsets of approximately 200 participants and

ran our models for each subset separately. This includes 2 subsets for analyses using nonverbal reasoning

speed and 20 subsets for analyses using visuospatial working memory performance. We found negligible

deviations in parameter estimates across subsets (see Supplementary Materials B).
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Prior specification

We used diffuse priors to mirror the priors used in Mplus with the exception of half-Cauchy priors for

the scale parameters as suggested by Gelman, 2006 (see Supplementary materials C for priors).

Model diagnostics

To check the robustness of our Bayesian models we ran a series of model diagnostic tests based on the

WAMBS guidelines (Aristodemou et al., 2022; Depaoli and van de Schoot, 2017; van de Schoot et al., 2021).

For a detailed description of our diagnostic process and results please see Supplementary materials D.

Model comparison

Our primary aim was to assess whether day-to-day fluctuations were necessary to explain children’s

time series of cognitive performance. To do this, we ran two models: (1) the three-level DSEM and (2) the two-

level DSEM. We used leave-one-out cross validation using the loo package in R to compare the prediction

error between the two models. The model with the lowest prediction error was chosen as the best model.

Individual-level models: DSEM for each individual

To assess whether day-to-day variability is necessary to explain children’s time series at an individual

level we ran a two-level DSEM for each child separately. This can be seen as a frequentist version of the

two-level DSEM applied to individual-level data with levels representing trials (level 1) nested within days

(level 2). These models are an extension of the models used by Galeano-Weber et al., 2018 and contain the

following parameters: (a) mean performance, which reflects the average performance over all trials (γ0j);

(b) linear trend, which captures the systematic change in performance over the course of the training plan

(β1Timek); (c) inertia, which captures the extent to which performance on a given trial (t) can be predicted

by performance on the previous trial (t-1; β2y(k−1)); (d) trial-to-trial variability, reflects the magnitude of a
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child’s fluctuations from their mean performance from trial-to-trial (ϵjk); (e) day-to-day variability, reflects

the magnitude of daily fluctuations in mean performance from a child’s overall mean performance (υ0j). We

within-day mean center the inertia parameter. The mathematical specification of the individual-level model

for day j on trial k is:

Level 1 model:

yjk = β0j + β1Timek + β2y(k−1) + ϵjk

Level 2 model:

β0j = γ00 + υ0j

Model comparison

First, we wanted to know if day-to-day variability was necessary to explain children’s time series of cog-

nitive performance for each child individually. We compared two models using two information criteria,

which quantify the evidence in favor of each model while explicitly penalizing models for having more pa-

rameters, the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). We abstained

from reusing leave-one out cross validation to test the robustness of our model comparison across fit indices.

The two individual-level (n = 1) models differed with respect to one parameter, the inclusion of day-to-day

variability. Substantively, this amounts to one model predicting that a child’s mean performance will fluctu-

ate from day-to-day while the other model predicting stability in a child’s mean performance across all days.

For each child we conducted the model comparison and computed the difference in AIC and BIC between

the two models.

Extracting individual difference estimates

After specifying our models we aggregated the parameter estimates from the individual-level models to

obtain individual-difference estimates of these parameters. We used these estimates to assess the covari-

ance between individual differences in day-to-day variability and trial-to-trial variability within tasks, and
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day-to-day variability between tasks.
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Results

Task 1: Visuospatial working memory grid

Visuospatial working memory performance is stable from day-to-day

Bayesian Dynamic Structural Equation models

We did not find evidence in favor of day-to-day fluctuations in working memory performance in our

population. Specifically, including a parameter which captured average day-to-day fluctuations in working

memory speed (0.02 SD) and accuracy (0.22 SD) did not improve the predictive power of our baseline model.

This was determined by comparing a three-level DSEM that included day-to-day variance with a baseline

DSEM that did not, using leave-one-out cross validation ((WMspeedELPDdiff
= −55.8,WMspeedSEdiff

=

25.2;WMaccuracyELPDdiff
= −2202.1,WMaccuracySEdiff

= 52.4)). For all parameter estimates please

refer to Supplementary Materials B.

Individual-level models: DSEM for each individual

The above result was mirrored in our individual-level model comparison. Sixty out of 4150 children

(1.45%) manifested a substantial amount of day-to-day variability in working memory speed and 112 chil-

dren fluctuated from day-to-day in their accuracy (2.7%), according to our information criteria (Figure 3).

Visuospatial working memory speed. Children’s working memory response-speed fluctuated on aver-

age by 0.05 standard deviations (SD) from day-to-day (meandaySD = 0.04, SDdaySD = 0.05, rangedaySD =

0.00− 0.42). These estimates are slightly larger in comparison to our Bayesian three-level model, since in-

formation across participants is not being used to inform individual-level estimates and the aggregation

of these estimates ignores uncertainty. To put this effect size into perspective, on average, children’s day-

to-day fluctuations are approximately 29% of the magnitude of individual differences in children’s working

memory speed (meanlogRT = 7.96, SDlogRT = 0.12; Figure 4). Trial-to-trial fluctuations were on average
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3.44 times greater than the between-subject variation in children’s working memory speed with a standard

deviation of 0.71 (meantrialSD = 0.43, SDtrialSD = 0.07, rangetrialSD = 0.19− 0.88).

Visuospatial working memory accuracy. Children’s working memory accuracy fluctuated on average by

0.37 SD from day-to-day (meandaySD = 0.37, SDdaySD = 0.14, rangedaySD = 0.00 − 1.15). The average

day-to-day variability was approximately 60% of the magnitude of individual differences in children’s work-

ing accuracy (meanaccuracy = 2.86, SDaccuracy = 0.61, rangeaccuracy = 0.78 − 5.24). The magnitude of

average trial-to-trial fluctuations was 1.79 times greater than the magnitude of between-subject differences

in working memory speed (meantrialSD = 1.09, SDtrialSD = 0.14, rangetrialSD = 0.48− 1.61). For all the

parameter estimates the Supplementary materials E. For a correlation matrix of all parameter estimates see

Supplementary materials F.

Task 2: Nonverbal reasoning

Nonverbal reasoning speed fluctuates from day-to-day

Bayesian DSEM

In contrast with our findings for visuospatial working memory, our analysis of nonverbal reasoning

speed suggested substantial evidence in favour of day-to-day differences in performance. Specifically, the

average magnitude of day-to-day fluctuations (0.42 SD) in nonverbal reasoning speed was substantial. This

was determined by comparing a three-level to a two-level DSEM using leave-one-out cross validation (ELPDdiff =

−55.8, SEdiff = 25.2).

Individual-level models

Approximately half of the children in our sample showed substantial day-to-day fluctuations in nonver-

bal reasoning speed according to our information criteria (AIC 47%, BIC 41%; Figure 3).
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Figure 3. Barplots and lineplots of participants classified as having day-to-day fluctuations (red) or stable
performance (blue). Lineplots illustrate raw data from participants in each classification. The bar plots
show the absolute count of participants that have better fit for each model according to information
criteria AIC and BIC in nonverbal reasoning speed (A) and working memory speed (B) and working memory
accuracy (C). The models were compared for each individual separately and include a model that
estimates day-to-day fluctuations in performance (red) and one that constraints day-to-day fluctuations to
zero (blue)
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Nonverbal reasoning speed. Children’s nonverbal response speed fluctuated on average by 0.40 stan-

dard deviations (SD) from day-to-day (meandaySD = 0.40, SD = 0.10, range = 0.21 − 0.77). Children’s

day-to-day fluctuations were 1.69 greater than the magnitude of individual differences in children’s nonver-

bal reasoning speed (meanlogRT = 8.93, SD = 0.23; Figure 4). Trial-to-trial fluctuations were on average

2.93 times greater than the between-subject variation in children’s working memory speed with a standard

deviation of 0.69 (meantrialSD = 0.69, SD = 0.10, range = 0.42 − 1.10). Children who fluctuated more

from day-to-day also showed greater trial-to-trial fluctuations (r = 0.22). The moderate positive association

indicates that individual differences across these two timescales are partially overlapping, but are largely

driven by non-overlapping factors.

Figure 4. Stacked barplots showing the total amount of day-to-day variability and between-subject
variance, along with the relative amount of variation that each component accounts for. Line plots show
data from participants used to illustrate either stability of rank order from day-to-day or day-to-day
fluctuations in rank-order.

Cross-domain correlations

Children with higher trial-to-trial variance in nonverbal reasoning also had greater trial-to-trial variance

in working memory speed (r = 0.30) but lower trial-to-trial variance in accuracy (r = -0.13). Focusing on mean

performance instead of variability, we find that children with slower mean nonverbal reasoning response
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speed also had slower visuospatial working memory speed (r = 0.25) and lower accuracy (r = -0.11). Complete

information on correlations between all three outcomes across the two cognitive domains can be found in

the Supplementary materials F.
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Discussion

Children’s cognitive performance fluctuates from day-to-day, but not in all cognitive domains. The size

of day-to-day fluctuations in children’s nonverbal reasoning speed varied per individual, with approximately

half of the children in our sample showing substantial day-to-day variance. The average magnitude of fluctu-

ations was 1.7 times larger than the between-subject variance in mean nonverbal-reasoning speed. Meaning

that children’s performance hierarchy in our sample is reshuffled across days. Trial-to-trial fluctuations were

on average greater than day-to-day fluctuations. The two timescales showed a moderate positive correla-

tion. This indicates some commonality or interaction in the forces shaping fluctuations across timescales.

Although, most of the variance within timescales seems to be driven by distinct sources.

Intriguingly, and contrary to our hypotheses, children’s visuospatial working memory performance was

stable from day-to-day (accuracy and speed). This finding is at odds with three studies that reported ev-

idence in favour of day-to-day fluctuations in working memory performance (Dirk and Schmiedek, 2016;

Galeano Weber et al., 2018; Galeano-Keiner et al., 2022). Our study presents the most well-powered exami-

nation of fluctuations in working memory, controls for statistical properties of human time-series that can

inflate estimates of day-to-day variability (e.g., temporal dependency; see de Haan-Rietdijk et al., 2016),

used adaptive testing, and evaluation metrics that explicitly reward parsimony. Hence, we believe cur-

rent evidence favors stability in children’s day-to-day mean working memory performance. However, at

a timescale of seconds working memory performance was volatile. Trial-to-trial fluctuations were on av-

erage 1.8 or 2.4 times greater than between-subject differences in mean performance, depending on our

performance metric.

The domain-specificity of our findings suggests that the mechanisms driving day-to-day nonverbal rea-

soning fluctuations specifically influence the reasoning domain. This aligns with theories that view working

memory as a distinct component which restricts our reasoning ability by constraining the complexity of the

structural representations we can form (Chuderski et al., 2012; Hagemann et al., 2023; Shipstead et al., 2012;

Oberauer, Süß, Wilhem, & Sander, 2007). Our results suggest the working memory part of this equation is
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constant. While day-to-day fluctuations capture instability in a unique component of nonverbal reasoning

which allows us to understand how it is distinct from working memory performance. Since mechanisms

with a broad effect on cognition, such as daily shifts in diurnal rhythms, require more assumptions to fit this

scenario it may be productive to seek more targeted mechanisms (e.g. active strategy shifting; Laurence

and Macedo, 2023). Shifts in strategies can explain some of the day-to-day variation in nonverbal reasoning

speed, while leaving working memory performance unaffected. Individual differences in day-to-day fluctua-

tions can in turn arise due to propensities for directed exploration which are tied to differences in prefrontal

dopamine function, creating a link between physiological and behavioural mechanisms (Frank et al., 2009).

It remains an open question why individual differences in directed exploration did not manifest as differ-

ences in day-to-day fluctuations in the working memory task which can also rely on strategy use. Future

work combing dense behavioral testing with neurophysiological measurements can employ joint modeling

techniques to test which latent processes give rise to day-to-day fluctuations in cognitive performance.

Differences in the propensity to shift strategies can also explain the overlap between children that have

greater trial-to-trial variance and day-to-day variance in nonverbal reasoning performance. The positive and

moderate association suggests that a propensity to shift strategies cannot exhaustively explain variation at

both the trial and day-to-day levels. This also renders common explanations of trial-to-trial variance such

as neural noise (Li et al., 2006; Voytek et al., 2015) dopamine binding potential (MacDonald et al., 2006), and

inattention (Aristodemou et al., 2022; Cai et al., 2021) incomplete explanations of day-to-day fluctuations in

nonverbal reasoning speed. The moderate correlation between the two timescales may also indicate that

there are “good” and “bad” types of variation at both the trial-to-trial and day-to-day level. For instance,

strategy shifts are arguably a “good” type of variability if they lead to the discovery of a better solution. In

contrast, sources like sleeplessness are less likely to be beneficial. The weak positive correlation may then

be a byproduct of some children showing a negative (or null) correlation between timescales, due to for

example higher “bad” trial variance and lower “good” day-to-day variance. Clustering approaches based

on patterns of covariation in time-series characteristics (Ntekouli et al., 2023) offer a promising method to

identify individual differences in the processes underlying fluctuations across timescales.
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Our findings suggest that cognitive phenotyping needs cognitive fluctuations. Fluctuations at both

the trial and day-level were weakly associated with mean performance supporting their potential to pro-

vide unique information essential for the comprehensive assessment of cognitive performance (Judd et al.,

2023). Trial-level fluctuations are already available in the data assessors routinely collect. Integrating this

information would lead to a better understanding of children’s performance at negligible cost. Moreover,

as contemporary evidence challenges the static trait conceptualization of cognitive performance, we need

to re-evaluate what the mean reflects. While there seems to be an anchor point around which fluctuations

happen, this is not the same as our understanding of the mean as a static true ability. This opens the door

for a new theoretical framework that does not necessary relegate the importance of the mean, but makes

space for dynamic properties which could offer effective intervention targets (Epstein et al., 2011; Kofler et

al., 2013) and the necessary constraints to our theories.

Our discussion should be qualified by our limitations. First, important demographics characteristics

that were not logged through the Vektor application could serve as covariates in our analyses and inform

the generalizability of our results. Second, current modeling techniques are improving but still come with

limitations. Aggregating estimates from our single-case models disregards uncertainty in estimates. We

reconciled this by modeling the three-level structure in a Bayesian framework with the trade of omitting in-

dividual differences in day-to-day variance. Thus, our modeling approaches complement each other. Future

efforts to create three-level models that allow for simultaneous estimation of individual differences across

all levels are becoming increasingly desirable as we move toward a dynamic understanding of psychological

constructs. Third, to obtain a reliable estimate of day-to-day variance we selected subsamples of children

with at least 20 days of training in visuospatial working memory and nonverbal reasoning tasks. This could

induce a selection of children who vary systematically from those who could not or did not perform at least

20 days. Future studies with random assignment of children to a set amount of training days can address

this issue.

The idea that cognition fluctuates from day-to-day has been around for decades, but rarely tested in a

formalized, quantitative manner. We conducted the first principled test of day-to-day fluctuations in cog-
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nitive performance in a large cohort of 4150 children. We found substantial daily fluctuations in nonverbal

reasoning speed and day-to-day stability in working memory performance. Fluctuations provide informa-

tion that is unique from mean performance and allow for a more granular dissection of children’s cognitive

performance. This should encourage researchers to move away from identifying intelligence with a static

snapshot of performance and embrace the signal within motion. The potential reward for those keen to ex-

plore dynamics in cognitive performance is a better understanding of children’s cognitive capacities, fairer

assessment strategies, and new cognitive interventions.
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